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Azure Jay Search (AJS) 
 

ABSTRACT 

 
A growing variety of Swarm Intelligence (SI) based algorithms can be found in the literature. 

This constant increase is due to the good performance of such methods in solving complex 

optimization problems. Among these problems, continuous to binary search spaces are 

considered. Generally, these metaheuristics are proposed primarily to deal with continuous 

variables, however, to deal with binary variables, some binarization technique must be 

employed. This dissertation has as main objective to propose a new SI based optimization 

metaheuristic for the Feature Selection (FS) task in a Fault Diagnosis (FD) problem. FD is the 

process of determining the nature or cause of a failure, analyzing a set or history of information 

to improve quality, reduce costs, and facilitate preventive maintenance in manufacturing 

processes. The research structure follows the multipaper model, composed by two papers 

developed to reach the main objective. The first paper proposes two versions of a new flocking-

based modified Crow Search Algorithm (CSA) named Azure Jay Search (AJS) to solve 

continuous optimization problems. The performance of AJS is experimentally compared with 

the classical Particle Swarm Optimization (PSO) and some SI techniques also based on the 

birds behavior, in terms of average accuracy, standard deviation and computational cost when 

applied to 10 fixed-dimension multimodal and public domain benchmark functions. Despite a 

relatively higher computational cost when compared to other techniques, both versions of the 

AJS algorithm performed relatively well in terms of average accuracy. The second paper 

proposes a binary version of AJS (BAJS) for the FS problem in a wrapper-based model. The 

proposed BAJS is applied to the FS task precisely in a FD dataset in the Steel Industry. The 

BAJS performance is evaluated in terms of average training accuracy, standard deviation, 

computational cost, and number of selected features when compared to other binary SI 

metaheuristics. Despite the complexity of the dataset and the relatively high computational cost 

presented by BAJS when compared to other techniques, it achieved relatively good average 

training accuracy based on 𝑘-fold Cross Validation, and subsets with a relatively low number 

of features. 

 

Keywords: Azure Jay Search, Binary Azure Jay Search, modified Crow Search Algorithm, 

Continuous optimization problems, Feature Selection. 

 



 

 

Azure Jay Search (AJS) 
 

RESUMO 

 
Uma variedade crescente de algoritmos baseados em Inteligência de Enxames (IE) pode ser 

encontrada na literatura. Esse aumento constante se deve ao bom desempenho de tais métodos 

na resolução de problemas complexos de otimização. Entre esses problemas, pode-se considerar 

desde espaços de busca contínuos até binários. Geralmente, essas metaheurísticas são propostas 

primeiramente para lidar com variáveis contínuas. Contudo, para lidar com variáveis binárias, 

alguma técnica de binarização deve ser empregada. Esta dissertação tem como principal 

objetivo propor uma nova metaheurística de otimização baseada em IE para a tarefa de Seleção 

de Atributos (SA) em um conjunto de dados de Diagnóstico de Falhas (DF).  

DF é o processo de determinar a natureza ou causa de uma falha, analisando um conjunto ou 

histórico de informações para melhorar a qualidade, reduzir custos e facilitar a manutenção 

preventiva nos processos de produção. A estrutura da pesquisa segue o modelo multipaper, 

composta por dois artigos desenvolvidos de modo a alcançar o objetivo principal. O primeiro 

artigo propõe duas versões de um novo Crow Search Algorithm (CSA) modificado baseado em 

flocking chamado Azure Jay Search (AJS) para resolver problemas de otimização contínua. O 

desempenho do AJS foi comparado experimentalmente com o clássico Particle Swarm 

Optimization (PSO) e algumas técnicas de IE também baseadas no comportamento de aves, em 

termos de acurácia média, desvio padrão e custo computacional quando submetidos a 10 

funções de domínio público multimodais de dimensão fixa. Apesar de um custo computacional 

relativamente maior quando comparado a outras técnicas, ambas as versões do algoritmo AJS 

tiveram um desempenho relativamente bom em termos de acurácia média. O segundo artigo 

propõe uma versão binária do AJS (BAJS) para o problema de SA em um modelo baseado em 

wrapper. O BAJS proposto é aplicado para a tarefa de SA justamente em um conjunto de dados 

de DF na Indústria Siderúrgica. O desempenho do BAJS é avaliado em termos de acurácia média 

de treinamento, desvio padrão, custo computacional e número de atributos selecionados quando 

comparado a outras metaheurísticas de IE também binárias. Apesar da complexidade do 

conjunto de dados e do BAJS ter apresentado um custo computacional relativamente maior do 

que as outras técnicas comparadas, ele alcançou uma acurácia média de treinamento 

relativamente boa (baseada no método de validação k-fold Cross Validation) e subconjuntos 

com um número relativamente baixo de atributos. 

 



 

 

Palavras-chave: Azure Jay Search, Binary Azure Jay Search, Crow Search Algorithm 

modificado, Problemas de otimização contínua, Seleção de Atributos. 
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INTRODUCTION   

This first chapter contextualizes the research, presents the general objectives to be achieved, as 

well as a synthesis of the remaining chapters that composes this dissertation. 

1.1 RESEARCH CONTEXTUALIZATION 

Over the past two decades, a growing variety of nature- and bio-inspired algorithms can be 

found in the literature. This constant increase is due to the fact that these metaheuristics find 

quality solutions to many complex and NP-hard problems (DHIMAN et al., 2021; YANG, 2021; 

EZUGWU et al., 2021). According to Molina et al.  (2020), nature-inspired algorithms can be 

divided into Breeding-based Evolution, Swarm Intelligence (SI), Physics and Chemistry, Social 

Human Behavior and Plants Based. The SI algorithms, in particular, are based on agents (natural 

or artificial), which generally respond to environmental stimuli both individually and 

collectively, from a behavior considered intelligent when they interact with each other in a given 

environment (HORNISCHER et al., 2019; MOLINA et al., 2020). Over the years, the behavior 

patterns of different agents have served as inspiration for the construction of SI metaheuristics, 

such as aquatic animals, terrestrial animals, flying animals, microorganisms, among others 

(MOLINA et al., 2020). Among the algorithms inspired by flying animals, the bees 

(KARABOGA & BASTURK, 2007; MUÑOZ et al., 2009; WANG et al., 2021), the bats 

(ALSALIBI et al., 2021; YANG, 2010), and the crows (ASKARZADEH, 2016; TORABI & 

SAFI-ESFAHANI, 2018) stand out, among many others.  
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The tradeoff between exploration and exploitation is one of the key challenges in SI 

metaheuristics (AL-RIFAIE, 2021). In the exploitation phase, also known as diversification, it 

is expected that solutions with the greatest possible diversity are generated to ensure that the 

search is not limited to a small number of regions within the search space, that is, the objective 

of this phase is to explore the search space globally. On the other hand, the exploration phase, 

also known as intensification, aims to explore the search space locally. In this phase, algorithms 

use local information to thoroughly explore promising regions of the search space to find better 

solutions. One of the disadvantages is that the algorithm can easily get stuck in “local 

optimums”, as the final solution usually depends on the starting point (MORALES-

CASTAÑEDA et al., 2020; YANG, 2014). 

There are now hundreds of different SI algorithms that can be used to solve a wide range 

of problems (MORALES-CASTAÑEDA et al., 2020). According to Wolpert and Macready 

(1997), the No Free Lunch (NFL) theorem, in general, states that any algorithm may not 

performance well for a given type of problem, while the same algorithm may performance well 

for other problems. This means that there is no universally good algorithm for the optimization 

task, but an infinity of algorithms, each suitable for certain type(s) of problem(s). Furthermore, 

considering this growing emergence of new metaheuristics for solving complex problems and 

the various factors that can directly influence the resolution of these problems, choosing the 

algorithm that best fits the problem you want to solve or the data to be analyzed is of vital 

importance and it is usually the user's responsibility to choose the appropriate algorithm for a 

specific problem (NOCEDAL & WRIGHT, 2006). 

Thus, the comparative study of metaheuristics brings relevant information about them, 

regarding their solving capacity and computational cost in face of problems of different areas 

and complexities. This information is very useful in making a decision regarding which 

metaheuristic to use considering the characteristics of the problem. 

1.2 OBJECTIVES 

The aim of this study is to propose a new SI metaheuristic and evaluate its performance 

compared to other state-of-the-art metaheuristics, in terms of average accuracy, standard 

deviation, dimensionality reduction and computational cost, applied to the FS problem in a set 

of fault diagnosis data in the steel industry. To achieve this general objective, as already said, 

this dissertation was structured using the multipaper model. A summary of the two papers is 

provided in subsection 2.2. 
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1.3 RESEARCH ORGANIZATION 

The remainder of this dissertation is organized as follows. Section 2 describes the methodology 

used in the research, specifically its characterization and structure. Sections 3 presents the first 

paper that makes up this study. This first paper aims to propose two versions of an SI-based 

metaheuristic to deal with continuous problems. Section 4 presents the second paper, this paper 

aims to propose a binary version of the algorithm proposed in the previous section to deal 

specifically with the Feature Selection task. Finally, section 5 presents the final considerations 

of the research. 
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METHODOLOGY   

This chapter presents the methodology used in the research, specifically its characterization and 

structure considering the multipaper model. 

2.1 RESEARCH CHARACTERIZATION 

According to Kumar (2011), a scientific research can be discussed from 3 different 

perspectives: application, objectives and mode of enquiry (as shown in Figure 1). 

Figure 1 – Types of Research 

 
Source: (KUMAR, 2011). 
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Regarding the application, this research is presented as applied research as “the research 

techniques, procedures and methods that form the body of research methodology are applied to 

the collection of information about various aspects of a situation, issue, problem or phenomenon 

so that the information gathered can be used in other ways – such as for policy formulation, 

administration and the enhancement of understanding of a phenomenon” (KUMAR, 2011). 

Regarding the objectives, this research is characterized as explanatory and descriptive. 

According to Kumar (2011), descriptive research aims to “to describe systematically a situation, 

problem or phenomenon” and explanatory research aims to “clarify why and how there is a 

relationship between two aspects of a situation or phenomenon”. Finally, regarding the enquiry 

mode, this research is considered quantitative. As Moresi (2003) defines, the quantitative 

research aims to “translate opinions and information into numbers to classify and analyze 

them”, and for that, “require the use of statistical resources and techniques”. 

2.2 RESEARCH STRUCTURE  

Table 1 below details the two articles that make up the proposed multipaper model. 

Table 1 – Summary of papers 

 Paper 1 Paper 2 

Title 

Azure Jay Search (AJS): A 

Flocking-based modified Crow 

Search Algorithm (CSA) 

A novel Binary Azure Jay Search 

(BAJS) for Feature Selection applied 

to Fault Diagnosis Problem  

Main 

Objective 

Development of two versions of a 

novel flocking-based modified CSA 

named AJS to solve continuous 

optimization problems 

Development of a binary version of 

AJS for the Feature Selection (FS) 

problem 

Application 

10 fixed-dimension multimodal and 

public domain benchmark 

continuous functions 

Wrapper-based FS task in a Fault 

Diagnosis dataset in the Steel 

Industry 

Compared 

Methods 

Sooty Tern Optimization Algorithm 

(STOA), Seagull Optimization 

Algorithm (SOA), Crow Search 

Algorithm (CSA) and Particle 

Swarm Optimization (PSO) 

Binary Coyote Optimization 

Algorithm (BCOA), Binary Crow 

Search Algorithm (BCSA), Binary 

Dragonfly Algorithm (BDA), and 

Binary Particle Swarm Optimization 
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(BPSO) 

Classification 

Algorithms 
- 

Naïve Bayes, K-Nearest Neighbor 

and Random Forest 

Evaluation 

Criteria 

Average accuracy, standard 

deviation, and computational cost 

Average training accuracy, standard 

deviation, computational cost, and 

number of selected features 

Validation 

Criteria 
- 10-fold Cross Validation 

Statistical 

Test 

Friedman test and Balanced two-

way ANOVA (parameter tuning) 

and Wilcoxon signed-rank test 

Wilcoxon signed-rank test 

Results Despite a relatively higher 
computational cost than the other 
compared techniques, both versions 
of AJS algorithm achieved good 
results in terms of average accuracy 

Despite a relatively higher 
computational cost than the other 
compared techniques, the BAJS 
algorithm achieved good results in 
terms of average accuracy and 
number of selected features 

Source: (THE AUTOR, 2021). 

 The first paper, according to Table 1, is proposed to solve continuous optimization 

problems, while the second paper is specifically proposed for the Feature Selection task. Both 

papers are included so that the main objective of this dissertation is achieved. 
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PAPER 1   

The first paper described in this chapter, contextualizes the research, describes the motivation 

for proposition of two versions of a new SI metaheuristic called Azure Jay Search (AJS) and 

presents a brief description of the two inspirations used in the construction of the algorithm, 

such as the CSA algorithm and the behavior of another bird found in nature that precisely gives 

its name to the AJS algorithm. Furthermore, it describes the step-by-step operation of the two 

versions of the proposed metaheuristic, the entire mathematical formulation behind the 

algorithms and the parameter tuning considering 625 different settings tested from Friedman's 

statistical test and the post-hoc Hochberg procedure. Finally, to evaluate the performance of the 

two versions of AJS (AJS! and AJS"), the paper describes the continuous optimization 

benchmark functions used in the comparison between the respective methods and other swarm-

based metaheuristics proposed in the literature, in terms of average accuracy, standard 

deviation, computational cost and the statistical significance of the results using the Wilcoxon 

signed-rank test. 

Azure Jay Search (AJS): A Flocking-based modified Crow Search 

Algorithm (CSA) 

Abstract 
The optimization process seeks to find a solution (or a set of ideal solutions) that minimizes or 

maximizes the result of a function or problem. Metaheuristics, in general, are higher-level 
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heuristics that combine random choices and choices based on prior information to try to explore 

the solutions space as best as possible. One of the types of metaheuristics that exist are those 

inspired by nature. Within this category, we can highlight the Swarm Intelligence (SI) 

metaheuristics. A well-known SI metaheuristic is the Crow Search Algorithm (CSA), proposed 

in 2016. CSA seeks to solve optimization problems simulating the collective and intelligent 

behavior of a flock of crows in the environment. Despite a good performance, CSA has 

problems dealing with a multimodal search space. Thus, this paper aims to development two 

versions of a novel flocking-based modified CSA named Azure Jay Search (AJS) to solve 

continuous optimization problems. The performance of AJS, compared to other techniques, is 

evaluated in terms of average accuracy, standard deviation and computational cost when 

applied to 10 fixed-dimension multimodal and public domain benchmark functions. Despite a 

relatively higher computational cost, both versions of the AJS algorithm find good solutions in 

terms of average accuracy when compared to the other algorithms. The second version, which 

performed better than the first, when compared to the original CSA, obtained better average 

accuracy in 3 functions and statistically equivalent performance in 5 functions out of 10. 

 
Keywords: modified Crow Search Algorithm (CSA), Azure Jay Search (AJS), Fixed-

dimension multimodal functions. 

1. INTRODUCTION 

Mathematical Optimization deals with the process of selecting the solution or a set of ideal 

solutions for a specific mathematical function (or a problem) to minimize or maximize the result 

of such a function (FAUSTO et al., 2020). According to Cavazzuti (2013), the optimization 

methods can be divided into deterministic and stochastic ones and can make use of different 

search engines, such as Exhaustive Search (MNICH & RUDNICKI, 2020), Random Search 

(OZBEY et al., 2020; SABRI-LAGHAIE & KARIMI-NASAB, 2019), Local Search 

(BRANDÃO, 2020; TUBISHAT et al., 2020), Heuristic Search (LÓPEZ-SANTILLÁN et al., 

2020; WANG et al., 2020) and Metaheuristic Search (MACEDO et al., 2016; THOM DE 

SOUZA et al., 2020, 2018). Exhaustive Search (also known as “the brute force” method) 

consists of a search strategy that explores the entire space of solutions, that is, it generates all 

feasible solutions for a given problem, aiming to find the best solution. According to Denil et 

al. (2014), Exhaustive Search is not recommended for most problems due to the high 

computational cost, since many solutions are generated. Random Search explores the solution 

space randomly, as mentioned by Denil et al. (2014), this technique is used both to obtain an 
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overview of the solution space and to create a starting point for other search strategies that 

require candidate solutions to start the optimization process. Local Search explores the solution 

space, walking through the neighborhood of a given solution. In other words, given a solution, 

this strategy explores solutions with features close to a previously chosen solution. According 

to Talbi (2014), one of the disadvantages of Local Search is that it converges toward local 

optima. According to Lu and Zhang (2013), Heuristic Search refers to a “search strategy that 

tries to optimize a problem, improving iteratively the solution based on a given heuristic 

function or a cost measure”. In other words, according to Thom de Souza (2008), heuristics use 

only information about the function to be optimized in their operation and operate in a “random-

oriented” way to find good or acceptable solutions with a plausible computational cost, without 

the guarantee of finding the optimal solution. 

In particular, metaheuristics consist of higher-level heuristics that are proposed for the 

solution of a wide range of optimization problems, ranging from single to multiobjective, 

continuous to discrete and constrained to unconstrained (DOKEROGLU et al., 2019). 

Moreover, many metaheuristics are finding success when applied to problems considered 

intractable, mainly due to the ability to find good solutions in a reasonable computational time 

(DOKEROGLU et al., 2019; HUSSAIN et al., 2019). To explore the search space on a global 

(exploration) and local (exploitation) scale, the operation of a metaheuristic, in general, 

combines choices based on experiences acquired from previous results and random choices. 

According to Fausto et al. (2020), for the global optimization achievement, it is important for a 

metaheuristic that presents a good trade-off between exploitation and exploration.  

As reported by Talbi (2014), there are several ways to classify a metaheuristic based on 

its features. One way is to divide them into nature-inspired versus uninspired. Several sources 

of inspiration are found in nature for the development of optimization algorithms, according to 

Molina et al. (2020), five branches can be highlighted: Breeding-based Evolution (XU et al., 

2020), Physics and Chemistry (AZIZI, 2021; TARAMASCO et al., 2020), Social Human 

Behavior (BOGAR & BEYHAN, 2020), Plants Based (EMAMI & SHARIFI, 2020; MENG et 

al., 2021) and Swarm Intelligence (SI). SI is inspired by the collective behavior of simple agents 

(biological or artificial), which according to Hornischer et al. (2019), can exhibit a stunning 

degree of organization.  

As mentioned by Dokeroglu et al. (2019), most of the state-of-the-art metaheuristics 

were developed before the year 2000 and among the SI algorithms considered “classics” are 

Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). Although, different 

recent works that address SI algorithms are found in the literature, such as Tunicate Swarm 
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Algorithm (TSA) (KAUR et al., 2020), Chameleon Swarm Algorithm (CSA) (BRAIK, 2021), 

Sine-cosine and Spotted Hyena-based Chimp Optimization Algorithm (SSC) (DHIMAN, 

2021), Artificial Jellyfish Search (AJS) (CHOU & TRUONG, 2021; SHAHEEN et al., 2021), 

Meerkat Optimization Algorithm (MOA) (SRINIVASAN et al., 2021), Multiprocess Salp 

Swarm Optimization (SSO) (MARTINEZ-RIOS & MURILLO-SUAREZ, 2021a), Multi-

threaded Spotted Hyena Optimizer (MT-SHO) (MARTINEZ-RIOS & MURILLO-SUAREZ, 

2021b), Improved Whale Optimization Salp Swarm Algorithm (IWOSSA) (SAAFAN & EL-

GENDY, 2021), Hybrid Firefly Algorithm with Grouping Attraction (HFA-GA) (CHENG et 

al., 2021), Enhanced Harris Hawks Optimization (RLHHO) (LI et al., 2021), Improved Bat 

Algorithm with Extremal Optimization Algorithm (IBA-EO) (CHEN et al., 2021), Artificial 

Gorilla Troops Optimizer (GTO) (ABDOLLAHZADEH et al., 2021b), African Vultures 

Optimization Algorithm (AVOA) (ABDOLLAHZADEH et al., 2021a), Coot Optimization 

Algorithm (NARUEI & KEYNIA, 2021), Rat Swarm Optimizer (DHIMAN et al., 2021), 

Honey Badger Algorithm (HASHIM et al., 2022), among others. 

Proposed by Askarzadeh (2016), the Crow Search Algorithm (CSA) is a population-

based metaheuristic that seeks to solve optimization problems simulating the collective and 

intelligent behavior of a flock of crows in the environment. CSA is easy to implement and only 

two parameters that influence its operation i.e. the flight length and awareness probability 

(MOHAMMADI & ABDI, 2018). In general, despite a good performance, the CSA has 

problems dealing with a multimodal search space, presenting premature convergence, 

stagnation and inability to avoid local optimum (COELHO et al., 2017; ISLAM et al., 2019; 

2021); 

Thus, the main goal and contribution of this paper include: 

1. development two versions of a novel flocking-based modified CSA named Azure Jay 

Search (AJS) to solve continuous optimization problems. 

2. use of 10 fixed-dimension multimodal and public domain benchmark functions to test the 

performance of the proposed methods in terms of average accuracy, standard deviation, and 

computational cost. 

3. performance comparison between the proposed method with other SI based metaheuristics 

such as Sooty Tern Optimization Algorithm (STOA), Seagull Optimization Algorithm 

(SOA), Crow Search Algorithm (CSA) and Particle Swarm Optimization (PSO). 

The remainder of this paper is structured as follows. Section 2 presents an overview of 

the CSA and the inspiration and mathematical formulation of the two versions of the proposed 
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AJS. Section 3 presents the setup of all experiments done in this paper along. Section 4 presents 

the obtained results and discussions. Section 5 concludes the paper and states the future work. 

2. THE PROPOSED AJS ALGORITHM   

This section details the CSA operation, the inspiration and mathematical modeling of the AJS 

proposed algorithms. 

2.1 CSA OVERVIEW  

Proposed by Askarzadeh (2016), the CSA is a population-based metaheuristic that simulate the 

intelligent behavior of crows in nature to solve continuous optimization problems. In general, 

crows live in flocks, hide their food, memorize the place, and protect their hiding places from 

other crows, as they have a habit of following each other with the sole purpose of stealing food.  

The new positions that each crow will assume during the search process are calculated 

based on the awareness probability parameter. This means that, at a given moment, crow 𝑖 

decides to follow crow 𝑗 with the aim of discovering its hiding place and stealing its food. In 

this case, two states can happen, according to Equation 1: 

 

𝑥#,%&! =	,𝑥
#,% + 𝑟% × 𝑓𝑙#,% × 2𝑚#,% − 𝑥#,%5								𝑟# ≥	𝐴𝑃#,%

a	random	position	otherwise																									
         (1) 

 

where 𝑟% and  𝑟# are a random number with uniform distribution between 0	and 1, 𝑓𝑙#,% denotes 

the flight length of crow 𝑗 at iteration 𝑖, 𝑚#,% is the best position memorized that crow 𝑗	has 

obtained so far and 𝐴𝑃#,% denotes the awareness probability of crow 𝑗 at iteration 𝑖. 

2.2 AJS INSPIRATION 

Jay is a common name for various small size passeriform birds, usually noisy, which belong to 

the crow family, Corvidae. The Azure Jay (Cyanocorax caeruleus) is a near threatened globally 

blue jay (BirdLife International, 2021), found in the Araucaria Moist Forests, coniferous forests 

of the Atlantic Forest Biome, full of Parana pines (Araucaria angustifolia), located in southern 

Brazil and immediately adjacent areas, far eastern Paraguay, and far northeastern Argentina. 

Paraná pine and Azure Jay are, respectively, the symbol tree and the symbol bird of Paraná 

(state of Brazil). 
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Regarding its appearance, the bird has a head, neck, and upper breast black or sooty, 

while the rest of its plumage is blue, usually cobalt blue or purplish-blue (Figure 2a), but it can 

also have a greenish-blue hue (Figure 2b). However, what is most striking about this bird, as 

well as other crows, are its actions, which demonstrate a high degree of intelligence. 

Figure 2 – Typical purplish-blue bird (a) and greenish-blue morph (b) 

 
Source: (MADGE & BURN, 1999).  

The behavior and the annual cycle of Azure Jay were observed for approximately two 

years (July 1985 to June 1987) on a farm in the municipality of Palmeira (70 km west of 

Curitiba), in the State of Paraná (ANJOS, 1991; ANJOS & VIELLIARD, 1993). Its annual 

cycle, according to Brady (2010), can be divided into three periods: the first period comprises 

the autumn season (approximately from April to July), when Azure Jays are looking for 

Araucaria seeds, intending to stock the pine nuts for food; the second period comprises the end 

of winter and the beginning of spring (approximately from August to September), when Azure 

Jays feed on insects and small animals, considering that pine nuts are not available at this time 

of year and; the third period comprises part of spring and practically all summer (approximately 

October to March), when they breed and care for the young. In addition, azure jays have a 

complex communication system (ANJOS & VIELLIARD, 1993), being able to communicate 

with each other through vocalizations with specific purposes, such as contact call and flight 

call: report your location to the group; social-call: call the group closer to itself; social alarm 

call: alert each other about mobbing predators; threat call: disobey an order from the dominant 

leader; social identity call: asking not to be disturbed; hunger call: supplicate for food; courtship 

call: dating/flirting; imitative calls: imitate the vocalization of another species; among others. 

2.3 AJS IMPLEMENTATION FOR CONTINUOUS PROBLEMS 

The proposed AJS algorithm is a population and blackboard-based metaheuristic that attempts 

to simulate the communication and search for food performed by Azure Jays in the first period 
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of its annual cycle to find the solution to continuous optimization problems. To assist in 

understanding the mathematical representation of the proposed implementation, it is assumed 

that: 

• AJS starts with a flock of 𝑁 jays flying in a 𝑑-dimensional environment. 

• Jays move in space having a velocity, position, and memory. 

• Jays can search for food alone or in small flocks. 

• There is a dominant leader in the flock who usually has the best source of pine nuts 

(fitness). 

• Jays communicate throughout the search process. 

In addition, five main operators are considered in their operation. The first is called 

“hiding”, when the jays bury the excess of pine nuts in a heavily loaded Araucaria in hiding 

places. The second is called “flocking”, when the leader orders the formation and the direction 

of the group. The third is called “contempt”, when the jay can fly to a different location from 

the commanded (usually looking for hiding places from other jays). The fourth is called 

“begging”, when the jays supplicate for food, and the fifth is called “compassion”, when a jay 

gives up its hiding place to another jay after supplication. 

2.3.1 Step 1: Adjustable parameters 

AJS adjustable parameters are initialized offline, that is, the values of different parameters are 

fixed before the execution of the metaheuristic (TALBI, 2014) . In addition to the dimension of 

problem search space (decision variables) (𝑑), maximum number of iterations (𝑚𝑎𝑥%'()) and 

population size (𝑁), AJS has the following parameters: cognitive parameter (𝑐!), social 

parameter (𝑐"), inertia parameter (𝑤) and compassion probability (𝑐*). 

2.3.2 Step 2: Initial population 

The position, velocity and memory of a given jay 𝑗 at time 𝑖 (iteration) in the search space are 

represented respectively by the vectors: 𝑝𝑜𝑠+
#,% = O𝑝𝑜𝑠!

#,% , 𝑝𝑜𝑠"
#,% , … , 𝑝𝑜𝑠+

#,%R, 𝑣𝑒𝑙+
#,% =

O𝑣𝑒𝑙!
#,% , 𝑣𝑒𝑙"

#,% , … , 𝑣𝑒𝑙+
#,%R e 𝑚𝑒𝑚+

#,% = O𝑚𝑒𝑚!
#,% , 𝑚𝑒𝑚"

#,% , … ,𝑚𝑒𝑚+
#,%R, where 𝑗 ∈ [1, 𝑁], 𝑖 ∈

[1,𝑚𝑎𝑥%'()]. If the initial population is not well diversified, a premature convergence can occur 

(TALBI, 2014). Thus, the initial population and velocity are generated randomly in the range 

[𝑙,,𝑢,], representing the lower and upper bounds allowed, as shown in Equations 2 and 3: 
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𝑝𝑜𝑠!
",$ = 𝑙% + (	𝑢% −	𝑙%) ∗ 𝑟𝑎𝑛𝑑"            (2) 
 

𝑣𝑒𝑙!
",$ = 𝑙% + (	𝑢% −	𝑙%) ∗ 𝑟𝑎𝑛𝑑"            (3) 

 
where 𝑟𝑎𝑛𝑑# 	is a uniformly distributed random variable in the range [0, 1]. 

About the initial memory of the jays, as they have no previous experience in the first 

iteration, it is assumed that they hide their foods at their initial positions, that is, 𝑚𝑒𝑚+
#,! =

𝑝𝑜𝑠+
#,!. 

2.3.3 Step 3: Fitness, Initial Dominant Leader and Global Solution 

The quality of the position that each jay occupies in the search space is calculated by inserting 

the values of the decision variables into the fitness function, according to Equation 4. In the 

first iteration, the dominant leader and the global solution correspond to the jay that has the 

hiding place with the largest number of pine nuts, that is, the best source of food (fitness). 

 
𝑓𝑖𝑡",& = 𝑓6𝑝𝑜𝑠!

",&7              (4) 
 

The best fitness, in a minimization problem, consists of the lowest value resulting from 

the insertion of decision variables in the fitness function, and in a maximization problem, the 

highest value. 

2.3.4 Step 4: Flocking  

The dominant leader flies and orders the formation and the direction of the flock. The new 

velocity and position of the leader 𝑑𝑜𝑚 are updated according to Equations 5 and 6.  

 
𝑣𝑒𝑙!

!'(,&)$ = 𝑤 ∗	𝑣𝑒𝑙!
!'(,& + 𝑐* ∗ 𝑟𝑎𝑛𝑑 ∗ 6𝐺𝑏𝑒𝑠𝑡! − 𝑝𝑜𝑠!

!'(,&7                 (5)  
 

𝑝𝑜𝑠!
!'(,&)$ = 𝑝𝑜𝑠!

!'(,& +	𝑣𝑒𝑙!
!'(,&)$           (6) 

 
where 𝑟𝑎𝑛𝑑 is a uniformly distributed random variable in the range [0, 1] and 𝐺𝑏𝑒𝑠𝑡	consists 

of the position of the best source of food so far. 

The fitness of the leader's new position is calculated from Equation 4 and his memory is 

updated as shown in Equation 7: 
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𝑚𝑒𝑚!
!'(,&)$ = =

𝑝𝑜𝑠!
!'(,&)$				𝑓6𝑝𝑜𝑠!

!'(,&)$7	is	better	than	𝑓6𝑚𝑒𝑚!
!'(,&7

𝑚𝑒𝑚!
!'(,&																																																																			otherwise

                  (7) 

2.3.5 Step 5: Contempt 

The jays can choose to obey (named beggars) or not obey (named rebels) the flocking order 

issued by the leader. In this case, three states may happen: 

State 1: There are no rebels 
 

In this case, all the jays follow the leader, that is, there are no rebels. The mathematical 

formulation that denotes whether a jay is rebel or not is shown in Equation 8: 

 

=𝑅𝑒𝑏𝑒𝑙																		𝑓6𝑝𝑜𝑠!
",&7	is	better	than	𝑓6𝑝𝑜𝑠!

!'(,&)$7
𝐵𝑒𝑔𝑔𝑎𝑟																																																																			otherwise

                  (8) 

 
The new velocity and position of the beggar jay 𝑏 is updated based on the position of 

the leader, shown in Equations 9 and 10: 

 
𝑣𝑒𝑙!

",$%& = 𝑤 ∗	𝑣𝑒𝑙!
",$ + 𝑐& ∗ 𝑟𝑎𝑛𝑑 ∗ .𝑚𝑒𝑚!

",$ − 𝑝𝑜𝑠!
",$4 + 𝑐' ∗ 𝑟𝑎𝑛𝑑 ∗ .𝑝𝑜𝑠!

!(),$%& −	𝑝𝑜𝑠!
",$4      (9) 

 
𝑝𝑜𝑠!

%,&)$ = 𝑝𝑜𝑠!
%,& +	𝑣𝑒𝑙!

%,&)$               (10) 
  

The fitness of the new position of the jay 𝑏	is calculated from Equation 4 and his 

memory is updated as shown in Equation 7. From there, the global solution is updated. In this 

state, the new global solution consists of the best food source memorized so far considering all 

the jays. 

State 2: All are rebels 
 

In this case, all the jays disobey the flocking order of the leader and fly in another 

direction. The new velocity and position of the rebel jay 𝑟 is updated according to Equations 

11 and 12: 

 
𝑣𝑒𝑙!

+,&)$ = 𝑤 ∗	𝑣𝑒𝑙!
+,& + 𝑐$ ∗ 𝑟𝑎𝑛𝑑 ∗ 6𝑚𝑒𝑚!

+,& − 𝑝𝑜𝑠!
+,&7               (11) 

 
𝑝𝑜𝑠!

+,&)$ = 𝑝𝑜𝑠!
+,& +	𝑣𝑒𝑙!

+,&)$                              (12)  
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The fitness of the new position of the jay 𝑟 is calculated from Equation 4 and his memory 

is updated as shown in Equation 7. From there, the global solution is updated. In this state,  

the new global solution consists of the best food source memorized so far by the current leader. 

State 3: Begging and Compassion  
 

In this case, there are both rebel and beggar jays. The rebel jay fly in another direction 

in relation to the leader, disobeying his flocking order, as shown by Equations 11 and 12, the 

fitness of each rebel jay is calculated according to Equation 4 and their memories are updated 

according to Equation 7. Each beggar jay chooses a rebel jay to beg for food, as they know 

better sources of pine nuts. The mathematical formulation that denotes whether a rebel jay has 

compassion or not with another beggar jay is shown in Equation 13. 

 

L𝑅𝑒𝑏𝑒𝑙			𝑗𝑎𝑦	has	compassion															𝑟𝑎𝑛𝑑 < 𝑐𝑝
𝑅𝑒𝑏𝑒𝑙			𝑗𝑎𝑦	has		no	compassion									otherwise                 (13) 

 
If a particular rebel jay 𝑟 has compassion, the new velocity and position of the beggar 

jay 𝑏 is updated based on the position of the same rebel jay 𝑟, shown in Equations 14 and 15: 

 
𝑣𝑒𝑙!

",$%& = 𝑤 ∗	𝑣𝑒𝑙!
",$ + 𝑐& ∗ 𝑟𝑎𝑛𝑑 ∗ .𝑚𝑒𝑚!

",$ − 𝑝𝑜𝑠!
",$4 + 𝑐' ∗ 𝑟𝑎𝑛𝑑 ∗ .𝑝𝑜𝑠!

*,$%& −	𝑝𝑜𝑠!
",$4                 (14) 

  
𝑝𝑜𝑠!

%,&)$ = 𝑝𝑜𝑠!
%,& +	𝑣𝑒𝑙!

%,&)$                    (15) 
 

If a particular rebel jay does not have compassion, the beggar jay repents and returns to 

follow the leader. Thus, the new velocity and position of the beggar jay 𝑏 is updated according 

to Equations 9 and 10. The fitness of each jay is calculated according to Equation 4 and their 

memories are updated according to Equation 7. 

Still in state 3 (when there are both rebel and beggar jays), the next step is to update the 

leader. In this case, for the position of new leader, considering the currently leading jay and the 

rebel jays that received supplication for food, the jay that was most compassionate with the 

others was chosen. After the leader update step, the global solution is updated. If the leader 

remained the same, the global solution is updated considering only the jays that followed the 

leader, otherwise, the global solution is updated considering the jays that followed the rebel jay 

(new leader). The Figure 3 presents the flowchart and Figure 4 the pseudocode of the proposed 

AJS. 
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Figure 3 – AJS flowchart 

 
Source: (THE AUTOR, 2021).  
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Figure 4 – AJS pseudocode 

 
Source: (THE AUTOR, 2021).  

The AJS algorithm tries to explore the solution space as best as possible and turns 

between states of exploitation and exploration subtly and throughout the search process. At 

each iteration, as explained above, the dominant leader (jay that usually has the best food 

source) flies in a certain direction and orders the jays in the flock to follow. Two moments after 
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flocking can be highlighted as exploitation states: 1) State 1: There are no rebels and 2) State 

3: Begging and Compassion. In the first moment of exploitation, as the name suggests, all jays 

obey the order of the dominant leader and fly to follow him, concentrating on that neighborhood 

of solutions, that is, the search process in a local region intensifies. About the state of 

exploration, two moments can also be highlighted: 1) State 2: All are rebels and 2) State 3: 

Begging and Compassion. At the first moment of exploration, as the name also suggests, all 

jays disobey the leader's order of direction and fly to a different way (place where they believe 

they can find better solutions when compared to the leader), that is, the process of search in 

different regions intensifies. Finally, about the second moment (both from the state of 

exploration and the state of exploitation), the local and global search occurs simultaneously, as 

there are jays following the leader and rebel jays seeking to explore other places in the search 

space at the same time, exactly as shown in Figure 5. 

Figure 5 – Begging and Compassion 

 
Source: (THE AUTOR, 2021). 

To further encourage the explorability of the algorithm, a second version is proposed. 

The only difference between the first version already described and the second is a random 

element added to version 2, described in detail in the following section. 

2.4 AJS VERSION TWO (AJS") 

As already mentioned, the only difference between version 01 proposed and version 02 is the 

insertion of a random element. This random element is inserted in step 5 (subsection 2.2.5), 

specifically in state 3: Begging and Compassion. Version 02, unlike version 01 (as can be 
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compared in Figure 6), the begging jays first beg for food to a rebel jay, this rebel jay can be 

compassionate or not compassionate. If the rebel jay does not have compassion (𝑟𝑎𝑛𝑑	 > 	𝑐𝑝), 

the beggar jay tries to follow the leader again, but at that time the leader has the freedom to 

decide whether to accept that beggar jay back. If the leader does not have compassion for the 

beggar jay (𝑟𝑎𝑛𝑑	 > 	𝑐𝑝), a random position in the search space is generated. 

 

Figure 6 – Random element added to version 02 (pseudo-code) 

Source: (THE AUTOR, 2021). 

The Figure 7 is an update of Figure 5 and illustrates how space can be explored more 

intensely in terms of global scale.
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Figure 7 – Begging and Compassion (version 02) 

 
Source: (THE AUTOR, 2021). 

3. EXPERIMENTAL SETUP 

To test the performance of the proposed AJS, the experiments detailed in this section were run 

on MATLAB R2020b in a macOS Big Sur operating system environment with Intel(R) Core 

(TM) i5 Dual-Core (1.80 GHz) and 8 Gigabytes (GB) of Random Access Memory (RAM). 

Below are described the benchmark functions, the algorithms used in the comparison and their 

respective parameters. 

3.1 BENCHMARK FUNCTIONS   

The benchmark functions used in this paper are fixed-dimension multimodal and minimization 

functions (F1 to F10). Furthermore, these same functions are called “classic” by (MIRJALILI 

et al., 2014) and can be found over the years in different works in the literature (DIGALAKIS 

& MARGARITIS, 2001; MENG et al., 2021; MIRJALILI et al., 2014; MIRJALILI & LEWIS, 

2013; SAAFAN & EL-GENDY, 2021; XUE & SHEN, 2020; YAO et al., 1999). Figure 8 

illustrate the search space of benchmark functions and Table 2 shows the mathematical formulas 

and other details such as dimension (𝐷), upper and lower bounds (Range) and optimal solution 

(𝐹-%.) of the same. 
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Table 2 – Details of fixed-dimension multimodal benchmark functions. 
Function D Range 𝒇𝒎𝒊𝒏 

𝑓$(𝑥) = ' $
%&&

+ ∑ $

'(∑ *+!,-!".
#$

!%&

/%
'0$ *

,$

  2 [-65,65] 1 

𝑓/(𝑥) = ∑ +𝑎1 −
+&*2!

$(2!+$.
2!
$(2!+'(+(

.
/

$$
10$   4 [-5,5] 0.00030 

𝑓3(𝑥) = 4𝑥$/ − 2.1𝑥$4 +
$
3
𝑥$5 + 𝑥$𝑥/ − 4𝑥// + 4𝑥/4  2 [-5,5] -1.0316 

𝑓4(𝑥) = 3𝑥/ −
%.$
47$

𝑥$/ +
%
7
𝑥$ − 65

/
+ 1031 − $

87
5 cos 𝑥$ + 10  2 [-5,5] 0.398 

𝑓%(𝑥) = [1 + (𝑥$ + 𝑥/ + 1)/(19 − 14𝑥$ + 3𝑥$/ − 14𝑥/ + 6𝑥$𝑥/ +
3𝑥//)] × [30 + (2𝑥$ − 3𝑥/)/ × (18 − 32𝑥$ + 12𝑥$/ + 48𝑥/ −
36𝑥$𝑥/ + 27𝑥//)]  

2 [-2,2] 3 

𝑓5(𝑥) = −∑ 𝑐1𝑒𝑥𝑝D−∑ 𝑎1'(𝑥' − 𝑝1')/3
'0$ E4

10$   3 [1,3] -3.86 
𝑓9(𝑥) = −∑ 𝑐1𝑒𝑥𝑝D−∑ 𝑎1'(𝑥' − 𝑝1')/5

'0$ E4
10$   6 [0,1] -3.32 

𝑓8(𝑥) = −∑ [(𝑋 − 𝑎1)(𝑋 − 𝑎1): + 𝑐1],$%
10$   4 [0,10] -10.1532 

𝑓;(𝑥) = −∑ [(𝑋 − 𝑎1)(𝑋 − 𝑎1): + 𝑐1],$9
10$   4 [0,10] -10.4028 

𝑓$&(𝑥) = −∑ [(𝑋 − 𝑎1)(𝑋 − 𝑎1): + 𝑐1],$$&
10$   4 [0,10] -10.5363 

Source: (THE AUTOR, 2021). 

Figure 8 – Benchmark functions search space. 

 
Source: (THE AUTOR, 2021). 

3.2 AJS PARAMETER TUNING   

Generally, there are adjustable parameters that influence the operation of any metaheuristic. In 

this way, TALBI (2014) asserts that there is no universally ideal set of values for such 

parameters and as they can have a crucial influence on research efficiency and effectiveness, it 

is vitally important that they be carefully adjusted. The process of adjusting these parameters is 

considered a challenge (DHIMAN & KAUR, 2019) and can be a time-consuming task (YU & 

LI, 2015). Some strategies aim precisely to provide guidelines for choosing a great parameter 

configuration, that is, a configuration that leads the metaheuristic to obtain a reasonable 
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performance for solving different optimization problems. Among these strategies, we can 

mention off-line parameter initialization (also called meta-optimization) and online parameter 

tuning (TALBI, 2014). 

In the present paper, we opted for the offline adjustment, whose values of different 

parameters are fixed before the execution of the metaheuristic. In this process, we seek the best 

configuration of values for four parameters of the proposed algorithms, totaling 625 

configurations of different parameters, namely O𝑐!, 𝑐", 𝑤, 𝑐*R × [0.1,0.5,1,5,10] ×

[0.1,0.5,1,5,10] × [0.1,0.5,1,5,10] × [0.1,0.3,0.5,0.7,0.9] for all 10 functions detailed in Table 

2. For each function, the 625 settings were run 30 times independently with 10.000 × 𝐷 

iterations each. To carry out the analysis of the sensitivity of the parameters and verify the best 

combinations of values, we divided the task into two stages, according to the work of Yu & Li 

(2015) and Carrasco et al. (2020).  

The first step consisted of applying the Friedman test to compare the 625 parameter 

settings for the 10 test functions. The Friedman test is similar to the classic balanced two-way 

ANOVA and tests the null hypothesis that all configurations perform equally against the 

alternative that some performance is significantly different. In the second step, if any 

configuration tested in the previous step is statistically different, a post-hoc Hochberg procedure 

is adopted to identify which configurations are in fact significantly different and which are not. 

Thus, it is possible to determine a good setting of values or a range of settings where the 

metaheuristic performs significantly better than others. 

Table 3 and 4 presents the results found by the proposed AJS! and AJS", respectively, in 

terms of average accuracy and standard deviation, best and worst mean accuracy considering 

the 625 parameter settings for all 10 functions.  

Table 3 – AJS! parameter tuning result 
Function Mean ± std Best Worst 

𝑓$ 45532.9 ± 24616.6 3229.8 71332.0 
𝑓/ 0.0770 ± 0.0792 0.0010 0.3278 
𝑓3 −0.1239 ± 0.9522 −1.0316 4.7735 
𝑓4 1.2443 ± 0.6934 0.3980 2.9724 
𝑓% 4.8500 ± 6.0700 3.0000 63.0980 
𝑓5 −3.5111 ± 0.2227 −3.8628 −3.0913 
𝑓9 −1.9137 ± 0.5281 −3.2777 −0.8659 
𝑓8 −1.4310 ± 1.4954 −8.8516 −0.3073 
𝑓; −1.6285 ± 1.5874 −10.2680 −0.4234 
𝑓$& −1.7624 ± 1.4944 −8.7044 −0.7149 

Source: (THE AUTOR, 2021). 
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Table 4 – AJS" parameter tuning result 
Function Mean ± std Best Worst 

𝑓$ 21.4993 ± 50.1512 0.9980 368.6800 
𝑓/ 0.0150 ± 0.0447 0.0006 0.4423 
𝑓3 −0.7516 ± 0.8177 −1.0316 10.9100 
𝑓4 0.5776 ± 0.4483 0.3980 3.9591 
𝑓% 3.4464 ± 3.6750 3.0000 46.6450 
𝑓5 −3.7180 ± 0.2126 −3.8628 −2.9405 
𝑓9 −2.4247 ± 0.6635 −3.3220 −1.0951 
𝑓8 −3.2624 ± 2.4451 −10.1530 −0.3501 
𝑓; −3.4678 ± 2.6106 −10.4030 −0.3989 
𝑓$& −3.5777 ± 2.6714 −10.5360 −0.5958 

Source: (THE AUTOR, 2021). 

During the parameter setting process, from Tables 3 and 4, it is possible to notice that 

version 02 reached the optimum solution in 8 functions, while version 01 reached the optimum 

solution in only 4 functions. On the other hand, Table 5 and 6 deal only with the best 

combination and all those that presented a statistically equivalent result. Specifically, each 

column brings an AJS parameter, and each row presents the values that parameter assumed 

considering the previously selected combinations. 

Table 5 – AJS! parameter values 
Function 𝒄𝟏 𝒄𝟐 𝒘 𝒄𝒑 

𝑓$ [0.5;1;10] [0.1] [0.1] [0.5;0.7;0.9] 
𝑓/ [0.1;0.5;1] [1] [0.5] [0.3;0.5;0.7;0.9] 
𝑓3 [0.1;0.5;1;10] [0.1;0.5;1] [0.1;0.5] [0.1;0.3;0.5;0.7;0.9] 
𝑓4 [0.1;0.5;1] [0.5;1] [0.5] [0.1;0.3;0.5;0.7;0.9] 
𝑓% [0.1;0.5;1] [0.1;0.5;1] [0.1;0.5] [0.1;0.3;0.5;0.7;0.9] 
𝑓5 [0.1;0.5;1] [1] [0.5] [0.1;0.3;0.5;0.7;0.9] 
𝑓9 [0.1;0.5;1] [0.5;1] [0.5] [0.1;0.3;0.5;0.7;0.9] 
𝑓8 [0.1;0.5;1;10] [0.5;1] [0.1;0.5] [0.1;0.3;0.5;0.7;0.9] 
𝑓; [0.1;0.5;1;10] [0.1;0.5;1] [0.1;0.5] [0.3;0.5;0.7;0.9] 
𝑓$& [0.1;0.5;1] [0.5;1] [0.5] [0.3;0.5;0.7;0.9] 

Source: (THE AUTOR, 2021). 

It is possible to notice that in version 02, a high number of combinations achieved a 

result (in terms of average training accuracy) relatively close to optimal, while in version 01 it 

is easier to find a pattern of values that positively influenced the algorithm, since the number 

of combinations that achieved good results is reduced. In general, the values of one of the 

combinations that had the most evidence was permanently chosen for the AJS parameters and 

can be seen in Table 7. 
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Table 6 – AJS" parameter values 

Function 𝒄𝟏 𝒄𝟐 𝒘 𝒄𝒑 
𝑓$ [0.1;0.5;1;10] [0.1;0.5;1;10] [0.1;0.5;1;10] [0.1;0.3;0.5;0.7] 
𝑓/ [0.1;0.5;1] [0.1;0.5;1] [0.1;0.5] [0.1;0.3;0.7;0.9] 
𝑓3 [0.1;0.5;1;10] [0.1;0.5;1;10] [0.1;0.5;1] [0.1;0.3;0.5;0.7;0.9] 
𝑓4 [0.1;0.5;1;10] [0.1;0.5;1;10] [0.1;0.5;1;10] [0.1;0.3;0.5;0.7;0.9] 
𝑓% [0.1;0.5;1] [0.1;0.5;1] [0.1;0.5] [0.1;0.3;0.5;0.7;0.9] 
𝑓5 [0.1;0.5;1;10] [0.1;0.5;1;10] [0.1;0.5;1;10] [0.1;0.3;0.5;0.7;0.9] 
𝑓9 [0.1;0.5;1;10] [0.1;0.5;1;10] [0.1;0.5;1;10] [0.1;0.3;0.5;0.7;0.9] 
𝑓8 [0.1;0.5;1;10] [0.1;0.5;1;10] [0.1;0.5;1;10] [0.1;0.3;0.5;0.7;0.9] 
𝑓; [0.1;0.5;1;10] [0.1;0.5;1;10] [0.1;0.5;1;10] [0.1;0.3;0.5;0.7;0.9] 
𝑓$& [0.1;0.5;1;10] [0.1;0.5;1;10] [0.1;0.5;1;10] [0.1;0.3;0.5;0.7;0.9] 

Source: (THE AUTOR, 2021). 

3.3 PARAMETER SETTINGS 

Table 7 – Parameter settings of optimization methods for comparison of the AJS 
Method Parameters Values Brief description 

Azure Jay Search (AJS) 

𝑐! (cognitive 
parameter) 1.0 The AJS simulates the behavior of 

jays and their complex 
communication system when 
searching for food in the 
environment. 

𝑐" (social parameter) 1.0 
𝑤 (inertia parameter) 0.5 
𝑐# (compassion 
probability) 0.5 

Sooty Tern 
Optimization Algorithm 

(STOA) 

𝐶$ (Controlling 
variable) 2.0 

The STOA algorithm is inspired by 
the migration and attacking behaviors 
of sea bird sooty tern in nature 
(DHIMAN & KAUR, 2019) 

Seagull Optimization 
Algorithm (SOA) 

𝐴 (Control parameter)  [2,0] The SOA algorithm is inspired by the 
migration and attacking behaviors of 
a seagull in nature (DHIMAN & 
KUMAR, 2019). 

𝐹% (Control 
parameter) 2.0 

Crow Search Algorithm 
(CSA) 

𝑓𝑙 (Flight length) 2.0 The CSA algorithm is inspired by 
the intelligent behavior of crows. 
(ASKARZADEH, 2016). 𝐴𝑃 (Awareness 

probability) 0.1 

Particle Swarm 
Optimization (PSO) 

𝑐! (Cognitive 
constant) 

1.0 
The PSO is inspired by the social 
sharing of information among 
conspeciates (KENNEDY & 
EBERHART, 1995). 

𝑐" (Social constant) 1.0 
𝑤 (Local constant) 0.3 
𝐼 (Inertia Coefficient)  0.75 

Source: (THE AUTOR, 2021). 

The AJS algorithm was compared to one swarm-based algorithms considered state-of-

the-art and to other optimization strategies whose inspiration for its operation also consisted in 
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observing the behavior of other birds in nature. Table 7 provides a brief description of each 

strategy and the respective adjustable parameters and their values (each value was set according 

to the original paper of the respective method, except PSO (KHISHE & MOSAVI, 2020)) and 

Table 8 presents the global parameters and the respective adopted values.  

Table 8 – Global parameters 
 Parameter  Value 
Number of iterations 10.000 ∗ 𝐷 
Number of independent runs  30 
Number of search agents 30 

Source: (THE AUTOR, 2021). 

4. RESULTS AND DISCUSSIONS 

The experimental results are shown in Tables 9 and 10. Table 9 shows the results of AJS!, and 

Table 10 shows the results of the AJS", compared to the other algorithms. 

The Wilcoxon signed-rank test, proposed by Frank Wilcoxon (WILCOXON, 1945), is a 

nonparametric method for comparison of two paired samples, used to verify if there are 

significant differences between them. In the present paper, we calculate the average training 

accuracy after 30 independent runs (samples) and the Wilcoxon signed-rank test is applied to 

compare these runs of each algorithm against the correspondent 30 independent runs of AJS! 

and AJS".  

Each column in Tables 9 and 10 represents one metaheuristic algorithm. For each 

function, the average accuracy (Acc) the standard deviation (Std), and the significant statistical 

difference (line “T”) between the AJS! and AJS" and the other proposed algorithms are 

shown. The best results are highlighted in boldface and the symbols used to show if there is a 

significant difference between the independent runs of the AJS! and AJS" and the other 

algorithms are: “≈”, “+” and “−”. The “≈” symbol means that the average accuracy of the two 

algorithms are statistically equivalent, the “+” and “−” symbol means that there is a statistical 

difference between the average accuracy of the two algorithms, but the first means that the other 

algorithm compared to AJS! or AJS" has better performance and the second means that the other 

algorithm has worse performance. 

Table 9 shows that the proposed AJS! got better performance than the CSA in function 

𝑓3 (statistically equivalent to STOA, SOA and PSO), better than CSA and SOA in function 𝑓5 

(statistically equivalent to STOA and PSO) and better than CSA, STOA and SOA in function  
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𝑓9 (statistically equivalent to PSO). For function 𝑓;, although AJS! lost to CSA, it performed 

better than STOA, SOA and PSO. 

Table 9. Results in terms of average accuracy, standard deviation, and statistical significance 
of the fixed-dimension multimodal benchmark functions (AJS!). 

  AJS! STOA SOA CSA PSO 

𝑓$ 
Acc 2.9424 0.9980 0.9980 𝟎. 𝟗𝟗𝟖𝟎 1.4619 
Std 1.8248 4.51𝐸 − 16 4.51𝐸 − 16 𝟎 1.0069 
T  + + + + 

𝑓/ 
Acc 0.0009 0.0011 0.0011 𝟎. 𝟎𝟎𝟎𝟑𝟎 0.0011 
Std 0.0004 0.0002 0.0003 𝟎 0.0014 
T  − ≈ + ≈ 

𝑓3 
Acc −𝟏. 𝟎𝟑𝟏𝟔 −𝟏. 𝟎𝟑𝟏𝟔 −𝟏. 𝟎𝟑𝟏𝟔 −10.316 −𝟏. 𝟎𝟑𝟏𝟔 
Std 𝟎 6.77𝐸 − 16 6.77𝐸 − 16 0 6.77𝐸 − 16 
T  ≈ ≈ − ≈ 

𝑓4 
Acc 𝟎. 𝟑𝟗𝟕𝟗 𝟎. 𝟑𝟗𝟕𝟖 𝟎. 𝟑𝟗𝟕𝟖 𝟎. 𝟑𝟗𝟕𝟖 𝟎. 𝟑𝟗𝟕𝟖 
Std 𝟎 1.69𝐸 − 16 1.69𝐸 − 16 𝟎 1.69𝐸 − 16 
T  ≈ ≈ ≈ ≈ 

𝑓% 
Acc 𝟑. 𝟎𝟎𝟎𝟎 𝟑. 𝟎𝟎𝟎𝟎 𝟑. 𝟎𝟎𝟎𝟎 𝟑. 𝟎𝟎𝟎𝟎 𝟑. 𝟗𝟎𝟎𝟎 
Std 𝟎 𝟎 𝟎 𝟎 5.0137 
T  ≈ ≈ ≈ ≈ 

𝑓5 
Acc −𝟑. 𝟖𝟔𝟐𝟖 −𝟑. 𝟖𝟓𝟒𝟗 −3.0150 −38.6280 −𝟑. 𝟖𝟑𝟕𝟎 
Std 𝟎 𝟎 0.5906 0 0.1435 
T  ≈ − − ≈ 

𝑓9 
Acc −𝟑. 𝟐𝟓𝟕𝟎 −2.9351 −3.7471 −4.2790 −𝟑. 𝟐𝟒𝟗𝟔 
Std 0.0850 0.4044 0.2808 5241.5223 𝟎. 𝟎𝟔𝟔𝟏 
T  − − − ≈ 

𝑓8 
Acc −7.1383 −0.7481 −1.9940 −𝟏𝟎. 𝟏𝟓𝟑𝟎 −6.3059 
Std 2.5995 0.8406 3.3603 𝟎 3.3093 
T  − − + ≈ 

𝑓; 
Acc −7.2883 −3.6309 −4.2760 −𝟏𝟎. 𝟒𝟎𝟑𝟎 −5.6121 
Std 3.3481 4.2956 4.3206 𝟎 3.4343 
T  − − + − 

𝑓$& 
Acc −8.3430 −7.0940 −7.9249 −𝟏𝟎. 𝟓𝟑𝟔𝟎 −5.5903 
Std 3.1464 4.4515 4.1742 𝟎 3.6936 
T  ≈ ≈ + − 

Source (THE AUTOR, 2021). 

In the Table 9, for functions 𝑓/, 𝑓8 and 𝑓$&, AJS despite also losing to CSA, got better 

performance than STOA in function 𝑓/ (statistically equivalent to SOA and PSO), got better 

performance than STOA and SOA in function 𝑓8 (statistically equivalent to PSO) and got better 

performance than PSO in function 𝑓$& (statistically equivalent to SOA and STOA). For functions 

𝑓4 and 𝑓%, all techniques had statistically equivalent performance. Finally, in function 𝑓$ AJS had 

the worst performance when compared to STOA, SOA, CSA and PSO. 
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Table 10. Results in terms of average accuracy, standard deviation, and statistical significance 

of the fixed-dimension multimodal benchmark functions (AJS"). 
  AJS" STOA SOA CSA PSO 

𝑓$ 
Acc 𝟏. 𝟎𝟔𝟒𝟎 𝟎. 𝟗𝟗𝟖𝟎 𝟎. 𝟗𝟗𝟖𝟎 𝟎. 𝟗𝟗𝟖𝟎 1.4619 
Std 0.2520 4.51𝐸 − 16 4.51𝐸 − 16 𝟎 1,0069 
T  ≈ ≈ ≈ − 

𝑓/ 
Acc 0.0005 0.0011 0.0011 𝟎. 𝟎𝟎𝟎𝟑𝟎 0.0011 
Std 0.0003 0.0002 0.0003 𝟎 0.0014 
T  − − + − 

𝑓3 
Acc −𝟏. 𝟎𝟑𝟏𝟔 −𝟏. 𝟎𝟑𝟏𝟔 −𝟏. 𝟎𝟑𝟏𝟔 −10.316 −𝟏. 𝟎𝟑𝟏𝟔 
Std 𝟎 6.77𝐸 − 16 6.77𝐸 − 16 0 6.77𝐸 − 16 
T  ≈ ≈ − ≈ 

𝑓4 
Acc 𝟎. 𝟑𝟗𝟕𝟖 𝟎. 𝟑𝟗𝟕𝟖 𝟎. 𝟑𝟗𝟕𝟖 𝟎. 𝟑𝟗𝟕𝟖 𝟎. 𝟑𝟗𝟕𝟖 
Std 𝟎 1.69𝐸 − 16 1.69𝐸 − 16 𝟎 1.69𝐸 − 16 
T  ≈ ≈ ≈ ≈ 

𝑓% 
Acc 𝟑. 𝟎𝟎𝟎𝟎 𝟑. 𝟎𝟎𝟎𝟎 𝟑. 𝟎𝟎𝟎𝟎 𝟑. 𝟎𝟎𝟎𝟎 𝟑. 𝟗𝟎𝟎𝟎 
Std 𝟎 𝟎 𝟎 𝟎 5.0137 
T  ≈ ≈ ≈ ≈ 

𝑓5 
Acc −𝟑. 𝟖𝟔𝟐𝟖 −3.8549 −3.0150 −38.6280 −3.8370 
Std 𝟎 0 0.5906 0 0.1435 
T  − − − ≈ 

𝑓9 
Acc −𝟑. 𝟐𝟖𝟐𝟎 −2.9351 −3.7471 −4.2790 −3.2496 
Std 𝟎. 𝟎𝟓𝟕𝟎 0.4044 0.2808 5241.5223 0.0661 
T  − − − − 

𝑓8 
Acc −8.6373 −0.7481 −1.9940 −𝟏𝟎. 𝟏𝟓𝟑𝟎 −6.3059 
Std 2.3547 0.8406 3.3603 𝟎 3.3093 
T  − − + − 

𝑓; 
Acc −𝟗. 𝟔𝟗𝟗𝟕 −3.6309 −4.2760 −𝟏𝟎. 𝟒𝟎𝟑𝟎 −5.6121 
Std 1.8235 4.2956 4.3206 𝟎 3.4343 
T  − − ≈ − 

𝑓$& 
Acc −𝟏𝟎. 𝟑𝟓𝟕𝟎 −7.0940 −7.9249 −𝟏𝟎. 𝟓𝟑𝟔𝟎 −5.5903 
Std 0.9790 4.4515 4.1742 𝟎 3.6936 
T  − − ≈ − 

Source (THE AUTOR, 2021). 

Table 10 shows that the proposed AJS" also obtained better accuracy than the CSA in 

function 𝑓3 (statistically equivalent to STOA, SOA and PSO), got better performance than CSA, 

STOA and SOA in function 𝑓5 (statistically equivalent to PSO) and got better performance than 

CSA, STOA, SOA and PSO in function 𝑓9. For functions 𝑓/ and 𝑓8, although AJS" lost to CSA, 

it performed better than STOA, SOA and PSO. For functions 𝑓; and 𝑓$&, AJS" got better 

performance than STOA, SOA and PSO (statistically equivalent to CSA). For functions 𝑓4 and 

𝑓%, all techniques had statistically equivalent performance. Finally, in function 𝑓$,  AJS" got better 

performance than PSO (statistically equivalent to CSA, STOA and SOA). 
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The results can also be seen in Figure 9, which shows the value of the best fitness found 

over the 30 independent runs (average training accuracy), for all techniques. Through Figure 9 

and comparison of tables 9 and 10, it is possible to verify, in general, that the AJS" performed 

better than the AJS!. While AJS! managed to reach the optimum solution in 4 functions, AJS" 

reached in 8 functions. Furthermore, while AJS! performed better than CSA for 3 functions and 

statistically equivalent performance in 2 functions, AJS" also performed better than CSA in 3 

functions and statistically equivalent performance in 5 functions. In addition, it is important to 

comment that AJS" did not lose (in terms of performance) of the STOA, SOA and PSO 

techniques in any function (or gained or achieved statistically equivalent performance). AJS! 

also had an interesting performance compared to STOA, SOA and PSO techniques, showing 

better performance or statistically equivalent performance for 9 out of 10 functions. 

 Table 11 presents the computational cost (expressed in seconds) of each of the compared 

techniques. Each column represents a different technique and each row a function. It is possible 

to see that the algorithm with the best computational cost for all functions is the PSO. For 7 

functions out of 10 the CSA algorithm obtained the second-best computational cost, in third 

place are STOA and SOA, which had very close computational cost, and finally, AJS! and AJS", 

which also had a similar computational cost for several functions. 

Table 11. Computational cost 

 AJS! AJS" STOA SOA CSA PSO 
𝑓! 549.39 566.42 549.44 539.30 584.97 123.12 
𝑓" 134.23 123.11 90.81 90.51 70.67 32.76 
𝑓2 61.21 59.32 33.96 34.15 28.70 17.98 
𝑓3 41.46 43.60 30.19 29.46 27.54 16.95 
𝑓4 65.27 51.04 29.65 28.30 24.99 13.71 
𝑓5 116.99 133.67 66.19 64.71 61.58 47.65 
𝑓6 223.81 397.52 158.20 158.48 114.06 107.33 
𝑓7 167.17 207.88 108.54 106.98 110.23 81.96 
𝑓8 187.27 195.88 119.01 123.00 113.63 106.76 
𝑓!9 222.06 227.10 141.56 139.05 144.59 127.23 

Source: (THE AUTOR, 2021). 
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Figure 9 – Average training accuracy (30 independent runs) obtained by each technique 

Source: (THE AUTOR, 2021). 
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5. CONCLUSIONS AND FUTURE WORKS 

The CSA algorithm is a population-based metaheuristic that simulates the intelligent behavior 

of crows when searching for food in the environment. Despite its good performance, the 

algorithm has difficulty in dealing with multimodal solutions spaces, and it can often get stuck 

in local optimums. Thus, we propose two versions of the AJS algorithm, a modified CSA based 

on flocking. 

The AJS aims to solve continuous optimization problems. In its operation, a flock of 

jays and their dominant leader, look for loaded Araucarias to store food. In an optimization 

process, jays are the researchers, and the best food source is the global solution to the problem. 

Generally, the dominant leader has the best source of pine nuts and orders the direction of the 

flock in the environment (solution space). In this leader-led process, the jays may eventually 

rebel against him and fly to a different location than the leader. When this happens, it means 

that the rebel jays have found good sources of food. In this way, the other jays beg the rebel jay 

for food. Versions 1 and 2 of the algorithms differ precisely in this stage of begging and 

compassion, since in version 2 a random element is added to further explore the space for 

solutions on a global scale. The performance of the AJS algorithm was compared, in terms of 

mean accuracy, standard deviation and computational cost, to other optimization strategies also 

inspired by the behavior of birds in nature, when submitted to 10 fixed-dimensional multimodal 

benchmark functions. Despite a relatively high computational cost when compared to other 

techniques, both versions of the AJS algorithm performed very well (in terms of average 

accuracy) compared to other optimization techniques. When compared to each other, the second 

version performed better than the first. And when compared to CSA, the first version had better 

performance for 3 functions and statistically equivalent performance in 2 functions, and the 

second version also had better performance for 3 functions, but statistically equivalent 

performance in 5 functions.  

As future work, we intend to explore the structure of the algorithm (AJS") to allow 

multiple groups (flocks). In this way, rejected jays have the possibility of forming a new group 

when no one shows compassion for them. It is also intended to explore different values for the 

parameter of compassion of a rebel jay and the parameter of compassion of the dominant leader, 

considering that in the current version there is only one parameter for both. Furthermore, we 

intend to propose a binary version of AJS, with the objective of working with Feature Selection 

(FS) problems.
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PAPER 2   

The second paper described in this chapter, in addition to contextualizing the research, details 

the proposal of a binary version of the AJS algorithm (proposed in the previous chapter), named 

BAJS, for the Feature Selection (FS) problem. To introduce the binary version, it is first 

described the step-by-step and mathematical formulation of the original version of the AJS, 

proposed for solving continuous optimization problems. After explaining the original AJS, the 

binarization strategy used is detailed. To achieve the main objective of this dissertation, the 

BAJS algorithm is submitted to the FS task (in a wrapper-based model) to a set of Fault 

Diagnosis data and compared to other techniques for the same problem, in terms of average 

training accuracy, standard deviation, computational, number of features selected and statistical 

significance. 

A novel Binary Azure Jay Search (BAJS) for Feature Selection 

applied to Fault Diagnosis Problem 

 
Abstract 
Feature Selection (FS) is considered a binary optimization problem and an important data pre-

processing method. In the literature, due to good performance, it is possible to find a multitude 

of recent metaheuristic algorithms, especially algorithms based on swarm intelligence, 

proposed precisely for the FS problem.  In principle, these metaheuristics are first proposed to 

4 
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work with continuous optimization problems, to operate in binary solution spaces, some 

binarization strategy must be employed. Thus, the aim of this paper is proposing a binary 

version of a recent swarm intelligence algorithm known as Azure Jay Search (AJS). The 

proposed Binary AJS (BAJS) is applied for the FS task in a Fault Diagnosis dataset in the steel 

industry in a wrapper-based model. BAJS performance is evaluated in terms of average training 

accuracy, standard deviation, computational cost, and number of selected features, and 

compared to other swarm intelligence metaheuristics. Despite a relatively higher computational 

cost, the BAJS algorithm find good solutions in terms of average training accuracy and subsets 

with a relatively small number of features. For the Naive Bayes (NB) and Random Forest (RF) 

classifiers, the BAJS obtained, respectively, the best and the second-best average training 

accuracy (statistically equivalent to other two techniques). 

 
Keywords: Feature Selection (FS) problem, Binary Azure Jay Search (BAJS), Fault Diagnosis 

(FD) problem. 

1. INTRODUCTION 

Optimization is a field of study that aims to maximize or minimize a given function (usually of 

several variables), often subject to a set of constraints. According to (TILAHUN & 

NGNOTCHOUYE, 2017), an optimization problem can be classified into three different 

categories: problems dealing with continuous, non-continuous and mixed decision variables. In 

a range, continuous variables can have any value (integer or fractional) and non-continuous or 

discrete variables are restricted to integer or binary values. In binary optimization, the variables 

involved in the process can only have two values: zero or one.  

Feature Selection (FS) is considered a binary optimization problem and an important 

data pre-processing method (ZHANG et al., 2020). The FS can be applied to select the most 

significant features while removing those that are irrelevant/redundant or possibly problematic 

(noisy features). Some benefits of FS can be highlighted, such as ease of visualization and 

understanding of data, reduction in computational cost and data storage, improvement in 

classification accuracy, among others (ALHAMIDI & JATMIKO, 2020). Two well-known FS 

methods are called filter (CHAUDHURI & SAHU, 2021; CUI et al., 2021; OUADFEL & ABD 

ELAZIZ, 2021) and wrapper (AMINI & HU, 2021; LIU & WANG, 2021; TARKHANEH et 

al., 2021).The main difference between these two methods is the relationship between the FS 

strategy and a classifier algorithm, that is, while the wrapper selects features based on the 
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evaluation made by a classification algorithm, the filter selects features independently, without 

direct contact with a classifier (TUBISHAT et al., 2021). 

In the literature, it is possible to find a multitude of recent metaheuristic algorithms 

proposed especially for the FS problem. In particular, are swarm intelligence-based algorithms,  

such as Binary Grasshopper Optimization Algorithm (BGOA) (WANG et al., 2020), Binary 

Coyote Optimization Algorithm (BCOA) (THOM DE SOUZA et al., 2020), Binary Grey Wolf 

Optimizer (BGWO) (HU et al., 2020), Binary Pigeon Inspired Optimizer (BPIO) (ALAZZAM 

et al., 2020), Binary Salp Swarm Algorithm (HEGAZY et al., 2020; NEGGAZ et al., 2020; 

TUBISHAT et al., 2020), Binary Dragonfly Algorithm (BDA) (HAMMOURI et al., 2020), 

Binary Moth-Flame Optimization (BMFO) (ELAZIZ et al., 2020), Binary Whale Optimization 

Algorithm (BWOA) (MAFARJA et al., 2020; NEMATZADEH et al., 2019), Binary Artificial 

Bee Colony (BABC) (WANG et al., 2020), Binary Particle Swarm Optimization (BPSO) 

(ROSTAMI et al., 2020; XUE et al., 2020), Binary Firefly Algorithm (BFA) (MARIE-SAINTE 

& ALALYANI, 2020; SELVAKUMAR & MUNEESWARAN, 2019), among others. 

At first, these metaheuristics, in general, are designed to deal with the resolution of 

continuous optimization problems, that is, their agents move in a continuous search space. For 

them to work with problems where the search space is binary, some binarization strategy must 

be employed. According to Crawford et al. (2017), binarization strategies can be classified into 

two main groups, namely: two-step binarization and continuous-binary operator transformation. 

The first group consists of continuing to work with continuous search space (but adding 

operators that transform the solution from ℝ. to {𝐼𝑛𝑡𝑒𝑟𝑆𝑝𝑎𝑐𝑒}) and involves techniques such 

as Transfer Functions (KILIÇ et al., 2021; THOM DE SOUZA et al., 2018; 2020), Great Value 

Priority and Angle Modulation (DONG et al., 2021; SLEZKIN et al., 2021). The second group 

consists to redefine the operators of the metaheuristics and involves techniques such as Boolean 

Approach (GUNASUNDARI et al., 2016, 2018), Set-Based Approach (ENGELBRECHT et 

al., 2019; JIA et al., 2018), Quantum Binary Approach (ALVAREZ-ALVARADO et al., 2021; 

LU & HE, 2021; ZHANG et al., 2021) and Binary Method Based on Estimation of Distribution 

(STRASSER et al., 2016). 

Furthermore, it is possible to find in the literature the application of many of these 

metaheuristics to well-known binary problems, such as Knapsack Problem 

(ABDOLLAHZADEH et al., 2021; LIU, 2020), Traveling Salesman Problem (AL-GAPHARI 

et al., 2021; PANDIRI et al., 2020), Clique Problem (WANG et al., 2020; ZHOU et al., 2020), 

Routing problems (LI et al., 2020; SONG et al., 2020), among others.  
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The aim of this paper is proposing a binary version of a recent swarm intelligence 

algorithm known as Azure Jay Search (AJS). The proposed Binary AJS (BAJS) is applied for 

the FS task in a Fault Diagnosis dataset in the steel industry in a wrapper-based model. BAJS 

performance is evaluated in terms of average training accuracy, standard deviation, 

computational cost, and number of selected features, and compared to other swarm intelligence 

metaheuristics such as Binary Coyote Optimization Algorithm (BCOA), Binary Crow Search 

Algorithm (BCSA), Binary Dragonfly Algorithm (BDA), and Binary Particle Swarm 

Optimization (BPSO). 

The remainder of this paper is structured as follows. Section 2 presents a brief 

description of the original AJS and mathematical formulation of the proposed BAJS. Section 3 

describes the design of the experiments. The obtained results are presented and discussed in 

Section 4. Section 5 concludes the paper and proposes directions for future research. 

2. AZURE JAY SEARCH (AJS) 

The AJS algorithm, is inspired by a bird from the crow family (Corvidae), the symbol of Paraná 

(state of Brazil) and almost globally threatened, called Azure Jay. This section briefly describes 

the inspiration and mathematical modeling of AJS to solve continuous optimization problems 

and the new BAJS approach to FS problem. 

2.1 AJS FOR CONTINUOUS OPTIMIZATION   

Jays are noisy birds and have a complex communication system. In addition, its main food 

source is the seeds of Araucaria (pine nuts), trees found mainly in southern Brazil. From there, 

the objective of the AJS is precisely to simulate the behavior of these jays in the environment 

(focusing on their communication during the search for food) to find the solution to continuous 

optimization problems. Figure 10 consists of a reduced flowchart and illustrates the general 

operation of the algorithm. 

In more detail, the algorithm has five operators (highlighted in bold throughout the 

explanation below and in green in Figure 10) and its operation basically resembles a flock of 

jays (𝑁) flying (usually in small groups and directed by a dominant leader (flocking)) in a 

certain 𝑑-dimensional environment, hiding their food (the excess of pine nuts of loaded 

araucarias), memorizing the position of the secret hiding place (hiding) and always looking for 

new sources of food. Thus, each jay moves in space having a velocity, position, and memory. 

The flocking moment is when the leader flies to a certain location in the solutions space and 
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orders the formation and direction of the group (the new leader velocity and position are 

updated according to Equations 16 and 17). 

 

𝑣𝑒𝑙!
!'(,&)$ = 𝑤 ∗	𝑣𝑒𝑙!

!'(,& + 𝑐* ∗ 𝑟𝑎𝑛𝑑 ∗ 6𝐺𝑏𝑒𝑠𝑡! − 𝑝𝑜𝑠!
!'(,&7               (16)  

 
𝑝𝑜𝑠!

!'(,&)$ = 𝑝𝑜𝑠!
!'(,& +	𝑣𝑒𝑙!

!'(,&)$         (17) 
 
where 𝑟𝑎𝑛𝑑 is a uniformly distributed random variable in the range [0, 1], 𝐺𝑏𝑒𝑠𝑡	consists of 

the position of the best source of food so far, w is the inertia parameter and 𝑐" is the social 

parameter. 

During this relentless quest, usually guided by the dominant leader (jay who usually has 

the best food source), as explained above, one or more rebel’s jays may refuse to obey your 

flocking order, moving in another direction in search of new sources of food (contempt). The 

mathematical formulation that denotes whether a jay is rebel or not is shown in Equation 18: 

 

=𝑅𝑒𝑏𝑒𝑙																		𝑓6𝑝𝑜𝑠!
",&7	is	better	than	𝑓6𝑝𝑜𝑠!

!'(,&)$7
𝐵𝑒𝑔𝑔𝑎𝑟																																																																			otherwise

      (18) 

 

where 𝑝𝑜𝑠+
#,%, 𝑝𝑜𝑠+

+:-,%&!, 𝑓2𝑝𝑜𝑠+
#,%5 and 𝑓2𝑝𝑜𝑠+

+:-,%&!5 are the position of a given jay 𝑗 and 

dominant leader 𝑑𝑜𝑚 in the current iteration 𝑖	and next iteration 𝑖 + 1 and the fitness function 

value corresponding to this positions. 

 At this moment of possible contempt, three things can happen: all jays can rebel and fly 

to a certain position in the solution space (Equations 19 and 20) or all jays can faithfully follow 

the leader (Equations 21 and 22)  or when there are 𝑛) rebel jays (where 0	 < 	𝑛) 	< 	𝑁) , the 

remaining jays (𝑁	 − 	𝑛)), called beggars , believing that the rebellious jays can obtain a better 

source of food than ever before, or even find the hiding place of some other jay in the herd, 

choose to beg a particular rebel jay for food (begging).  

 

𝑣𝑒𝑙!
+,&)$ = 𝑤 ∗	𝑣𝑒𝑙!

+,& + 𝑐$ ∗ 𝑟𝑎𝑛𝑑 ∗ 6𝑚𝑒𝑚!
+,& − 𝑝𝑜𝑠!

+,&7               (19) 
 
𝑝𝑜𝑠!

+,&)$ = 𝑝𝑜𝑠!
+,& +	𝑣𝑒𝑙!

+,&)$                              (20)  
 

𝑣𝑒𝑙!
",$%& = 𝑤 ∗	𝑣𝑒𝑙!

",$ + 𝑐& ∗ 𝑟𝑎𝑛𝑑 ∗ .𝑚𝑒𝑚!
",$ − 𝑝𝑜𝑠!

",$4 + 𝑐' ∗ 𝑟𝑎𝑛𝑑 ∗ .𝑝𝑜𝑠!
!(),$%& −	𝑝𝑜𝑠!

",$4    (21) 
 
𝑝𝑜𝑠!

%,&)$ = 𝑝𝑜𝑠!
%,& +	𝑣𝑒𝑙!

%,&)$               (22) 
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where 𝑐! is the cognitive parameter, 𝑚𝑒𝑚+

),% and 𝑚𝑒𝑚+
,,% are the hiding place (best position) so 

far (iteration t) of the rebel jay	𝑟 and beggar 𝑏, respectively.  

In this situation, the rebel jays may or may not allow some jay to follow and feed on 

their source (compassion). If the rebel jays have no compassion, the beggar jay can ask the 

leader to follow you again. The leader also has the option to allow the jay back or not. The 

mathematical formulation that denotes whether a rebel jay or the leader will have compassion 

or not is shown in Equation 23: 

 

L𝑅𝑒𝑏𝑒𝑙/𝐿𝑒𝑎𝑑𝑒𝑟			𝑗𝑎𝑦	has	compassion															𝑟𝑎𝑛𝑑 < 𝑐𝑝
𝑅𝑒𝑏𝑒𝑙/𝐿𝑒𝑎𝑑𝑒𝑟		𝑗𝑎𝑦	has		no	compassion									otherwise                 (23) 

 

where 𝑐𝑝 is the compassion probability and 𝑟𝑎𝑛𝑑 is a uniformly distributed random variable in 

the range [0, 1].  

In this moment of bagging and compassion, if a rebel jay has compassion and allows a 

beggar jay to follow her, the new velocity and position of that beggar jay is updated according 

to Equations 24 and 25. If a beggar jay comes back to follow the leader, his velocity and position 

are updated according to Equations 21 and 22. Otherwise, if no one has compassion for a beggar 

jay, a random position is generated in the search space. 

 

𝑣𝑒𝑙!
",$%& = 𝑤 ∗	𝑣𝑒𝑙!

",$ + 𝑐& ∗ 𝑟𝑎𝑛𝑑 ∗ .𝑚𝑒𝑚!
",$ − 𝑝𝑜𝑠!

",$4 + 𝑐' ∗ 𝑟𝑎𝑛𝑑 ∗ .𝑝𝑜𝑠!
*,$%& −	𝑝𝑜𝑠!

",$4                 (24) 
  
𝑝𝑜𝑠!

%,&)$ = 𝑝𝑜𝑠!
%,& +	𝑣𝑒𝑙!

%,&)$                    (25) 
 

Figure 10 – AJS reduced flowchart  

Source: (THE AUTOR, 2021). 
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2.2 NEW BAJS APPROACH FOR FS  

According to Crawford et al. (2017), a continuous search space is a set of all possible solutions 

of the optimization problem that satisfy the problem’s constraints. In a continuous search space, 

the variables can have any value in the given interval, however, in a binary search space, the 

variables can have only two values: 0 or 1. As already mentioned, FS is a binary problem. 

In the wrapper-based FS problem, for example, the objective is select the smallest subset 

of features with the greatest classification accuracy. To formulate this problem, one can let 𝑋%be 

the binary variable such that: 

 

𝑋& = V		1							𝑖𝑓	𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑖	𝑤𝑎𝑠	𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑,
	0						otherwise																															

                    (26) 

 

There are some techniques that can be used to convert solutions from continuous to 

binary space. In general, transfer functions are used to generate the probability of changing a 

position’s elements to 0 or 1 based on the value of the step vector of the 𝑗 search agent in the 𝑑 

dimension in the current iteration 𝑡	as an input parameter (MAFARJA et al., 2018). These 

transfer functions are divided into two main categories: S-shaped and V-shaped 

(ABDOLLAHZADEH et al., 2021).  The transfer function used in BAJS belongs to the V-

shaped family and is described in Equation 27. 

 

𝑉6𝑝𝑜𝑠!
",&)$7 = [*

,
arctan \,

*
𝑝𝑜𝑠!

",&][	                                                                                       (27) 

 

where  𝑝𝑜𝑠!
",&)$ is a position of a given jay 𝑗 at time 𝑖  in dimension 𝑑. 

After applying the transfer function, for each dimension 𝑑 of a jay 𝑖, a binary value 0 or 

1 is assigned with a probability 0.5 as follows: 

 

𝑏𝑖𝑛𝑎𝑟𝑦	(𝑝𝑜𝑠!
",&)$) = L1							𝑖𝑓	𝑉6𝑝𝑜𝑠!

",&)$7 	≥ 0.5
0							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																				

       (28) 

3. DESIGN OF EXPERIMENTS 

We compare the performance of the proposed BAJS against other techniques using the wrapper 

approach based on Naïve Bayes (NB), K-Nearest Neighbors (KNN) and Random Forest (RF) 
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classifiers to perform FS. This section describes the dataset used, the validation and evaluation 

criteria, the statistical test and the FS techniques and their respective parameters. 

3.1 BENCHMARK DATA SET    

Most engineering activities entail judgments concerning product, service, and system design, 

all of which are tied in some manner to enhancing performance, productivity, sustainability, 

quality, safety, and efficiency while reducing cost, energy consumption, flaws, and 

environmental effect (YANG et al., 2016). The new industrial revolution called Industry 4.0 

refers precisely to the integration of a variety of technologies and agents such as Internet of 

Things (IoT) (ASHIMA et al., 2021; MARIYAPRINCY & SAMIAPPAN, 2021), Cyber-

physical Systems (CPS) (NEAL et al., 2021; TRAGANOS et al. (2021), Cloud Computing 

(JAVED et al., 2021), Big Data (BERGES et al., 2021), Machine Learning  (BRIK et al., 2019;  

O’DONOVAN et al., 2019; TRAN et al., 2021), among others, with the common objective of 

increasing a manufacturing system's efficiency and responsiveness (AHUETT-GARZA & 

KURFESS, 2018).  

 By connecting every machine and activity through network sensors to the Internet, a 

huge amount of data is generated (KOTSIOPOULOS et al., 2021). The purpose of ML is 

precisely to evaluate this generated data and discover potentially useful information about the 

company and the manufacturing process. It is possible to find in the literature different ML 

tasks being applied to problems such as pattern detection and classification of health monitoring 

systems (BERTINO et al., 2021; JUYAL et al., 2021), fault detection and diagnosis (FAN et 

al., 2021;HE et al., 2021), prediction of future working conditions and remaining useful life 

(SHE & JIA, 2021; TONG et al., 2021; YAO et al., 2021), among others.  

The Fault Diagnosis (FD) is the process of identifying the nature or cause of a failure 

through the analysis of a set or history of information, to improve manufacturing quality, reduce 

the cost of product testing and facilitate preventive maintenance of equipment (FAKHR & 

ELSAYAD ,2012). The data set used in this paper consists of the Steel Plate Fault, available on 

the UCI Machine Learning Repository (LICHMAN, 2013). This data set has 1941 instances, 

27 predictive features, and classifies steel plate failures into 7 different types, such as scratches, 

stains, dirt, bumps, and other failures. Table 12 shows the number of cases per class present in 

the dataset. 
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Table 12 – Number of instances for each class 
 Class  Number of cases 

Pastry 158 
Z_Scratch 190 
K_Scatch 391 

Stains 72 
Dirtiness 55 
Bumps 402 

Other_Faults 673 

Source: (THE AUTOR, 2021). 

 The dataset was not separated into training and testing, as the focus of this paper was to 

analyze the training accuracy. Thus, for the construction of the model, the entire set of instances 

was used. The validation method used in the construction of the model is the Cross Validation, 

explained in section 3.2 below. 

3.2 VALIDATION, EVALUATION CRITERIA AND STATISTICAL TEST   

Cross Validation (CV) is a technique used for performance validation of machine learning 

models. One of the existing methods for applying CV is the 𝑘-fold method, used in this paper. 

The 𝑘-fold divides the training set randomly into 𝑘 subsets with approximately the same number 

of samples in each. At each iteration, a set formed by 𝑘 − 1	subsets is used for training and the 

remaining subset will be used for validation, generating a metric result for evaluation, like 

accuracy. The accuracy consists of the ratio between correctly classified instances and the total 

number of instances submitted for classification (Equation 18). 

Figure 11 – 10-fold Cross Validation 

 
Source: (THE AUTOR, 2021). 
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As can be seen in Figure 11, this process ensures that each subset will be used for 

validation at some point in the model evaluation. At the end of the process, the average of the 

𝑘 accuracies is calculated with the aim of obtaining the average accuracy (main evaluation 

criteria used in this paper).  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 ;)<(	*:>%'%?((;A)&;)<(		.(CD'%?((;E)
;A&;E&FDG>(	*:>%'%?(	(FA)&FDG>(	.(CD'%?(	(FE)

       (18) 

 

As we calculated the average training accuracy after 30 independent runs, The Wilcoxon 

signed-rank (WILCOXON, 1945) test is proposes to compare these runs of each feature 

selection algorithm against the correspondent 30 independent runs of BAJS. This test is 

a nonparametric method for the comparison of two paired samples, which the objective is to 

verify if there are significant differences between two samples. 

3.3 PARAMETER SETTINGS 

The experiments carried out to compare the performance of the proposed BAJS with the other 

FS techniques were run on MATLAB R2020b in a macOS Big Sur operating system 

environment with Intel(R) Core (TM) i5 Dual-Core (1.80 GHz) and 8 Gigabytes (GB) of 

Random Access Memory (RAM). Table 13 provides a brief description of each FS technique 

and the respective adjustable parameters and their values (each value was set according to the 

original paper of the respective method) and Table 14 presents the global parameters and the 

respective adopted values. For a fair comparison, we used the same V-shaped transfer function 

(Equation 27) in BCOA, BCSA and BPSO.   

Table 13 – Parameter settings of optimization methods for comparison of the BAJS 
Method Parameters Values Brief description 

Binary Azure Jay 
Search (BAJS) 

𝑐! (cognitive 
parameter) 1.0 

The AJS simulates the 
search for food and the 
complex communication 
system of Azure Jays. 

𝑐" (social 
parameter) 1.0 

𝑤 (inertia 
parameter) 0.5 

𝑐* (compassion 
probability) 0.5 

Binary Coyote 
Optimization 

Algorithm (BCOA) 

𝑁* (Number of 
packs) 5.0 The COA considers the 

social organization of the 
coyotes and its adaptation to 
the environment to solve 
continuous optimization 

𝑁H (Number of 
coyotes) 6.0 

𝑃> (Scatter 1 𝐷⁄  
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probability) problems (THOM DE 
SOUZA et al., 2020) 𝑃D (Association 

probability) 1 − 𝑃>	 2⁄  

𝑃( (Eviction 
probability) 0.005 × 𝑁H 

Binary Crow Search 
Algorithm (BCSA) 

𝑓𝑙 (Flight length) 2.0 
The CSA is a population-
based technique that 
attempts to simulate 
intelligent behaviors of 
crows to find the solution of 
optimization problems 
(THOM DE SOUZA et al., 
2018) 

𝐴𝑃 (Awareness 
probability) 0.1 

Binary Dragonfly 
Algorithm (BDA) 

𝑠 (weight of 
separation)  

0.1 

The BDA algorithm 
simulates the social 
interaction of dragonflies in 
searching for food source 
and avoiding enemies in 
nature (MAFARJA et al., 
2018) 

𝑎 (weight of 
aligment) 

0.1 

𝑐 (weight of 
cohesion) 

0.7 

𝑓 (attraction 
towards the food 
source) 

1.0 

𝑒 (distraction from 
the enemy) 

1.0 

𝑤 0.9 − 0.2 

Binary Particle 
Swarm Optimization 

(BPSO) 

𝑐! (Cognitive 
constant) 

2.0 The BPSO is one of the most 
traditional SI algorithms 
which applies concepts of 
social interaction (BANKA 
& DARA, 2015) 

𝑐" (Social constant) 2.0 
𝑤 (Local constant) 2.0 

No FS - - No FS uses all of features 
for the classification 

Source: (THE AUTOR, 2021). 

Table 14 – Global parameters 
 Parameter  Value 

Number of generations 100 

Number of independent runs 30 

Search agents 30 
Problem dimension Number of features in data set 

𝑘 for cross validation 10 

Number of neighbors (KNN)  5 

Source: (THE AUTOR, 2021). 
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4. RESULTS AND DISCUSSIONS 

A statistical technique known as Principal Component Analysis (PCA) was applied to the data 

set, which aims to reduce the dimensionality, that is, to transform a set of data with 𝑛 variables 

(possibly correlated), in a smaller set of 𝑘 variables derived from the original set (JOLLIFFE, 

2002).  

Figure 12 - Point cloud of dataset analyzed after PCA application 

 
Source: (THE AUTOR, 2021). 

The 𝑘	variables resulting from the PCA application consist of a linear combination of 

the 𝑛 original variables. Furthermore, the first 𝑘 variables contain the greatest amount of 

variation present in the data. The objective of applying the PCA in this paper was to allow the 

visualization of the point cloud, as shown in Figure 12. Through the Figure 12, it is possible to 

perceive the complexity of the data, considering the difficulty in identifying a pattern and 

separate them visually. This fact explains the reasonably low experimental results (in terms of 

average predictive accuracy) shown in Table 15. 

Table 15 shows the BAJS results (in terms of average accuracy, standard deviation, and 

statistical significance) when compared to the other proposed techniques (in a wrapper model 
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based both the NB, the KNN and the RF classifiers). Each column represents an FS strategy 

(except the last column) and each row the results of those techniques for the 3 different 

classifiers. The best results are in bold, and the “T” line shows the statistical difference between 

the BAJS and the other compared techniques. The symbols “+” and “−” denote statistical 

difference, the first when the BAJS obtained lower accuracy than the other compared technique 

and the second when the BAJS obtained better accuracy than the other compared technique. 

Finally, the symbol “≈” denotes statistical equivalence in performance between the two 

compared techniques. 

Table 15 – Results in terms of average training accuracy, standard deviation, and statistical 

significance. 

  BAJS BCOA BCSA BDA BPSO No  FS 

NB 
Acc 67.5644 66.8662 66.7416 66.2104 67.4756 60.9112 
Std 0.2923 0.2152 0.1333 0.1719 0.2265 0 
T  − − − ≈ − 

KNN 
Acc 68.8115 70.8548 69.2597 57.0947 72.2916 35.5681 
Std 1.0246 1.5459 1.6201 1.4726 1.0233 0 
T  + ≈ − + − 

RF 
Acc 73.5354 73.9462 72.5174 72.2137 74.5101 70.1471 
Std 1.6338 1.0731 1.3897 0.8705 0.8861 0 
T  ≈ − − + − 

Source: (THE AUTOR, 2021). 

It is possible to see that the proposed algorithm obtained a reasonably good accuracy 

compared to other techniques. For the NB classifier, the BAJS obtained better accuracy than 

BCOA, BCSA, BDA and No FS algorithms, and accuracy statistically equivalent to BPSO. For 

the KNN classifier, the BAJS algorithm obtained the third-best accuracy and beat the BDA and 

No FS algorithms, and present accuracy statistically equivalent to BCSA. As for the RF 

classifier, the BAJS obtained second best accuracy and beat the BCSA, BDA and No FS, 

statistically equivalent to BCOA.  

Regarding the number of selected features (as shown in Figure 13), for the NB, KNN 

and RF classifiers, the algorithms that selected the smallest subsets of features were, 

respectively, the BDA (but with the second worst average accuracy), BPSO (with the best 

average accuracy) and BCOA (with the second-best average accuracy). Although BAJS selects 

relatively small subsets of features, it selected the second worst subset for the 3 classifiers, tying 

with the BCOA for the NB classifier, with the BDA for the KNN classifier and tied with the 

BPSO for the RF classifier. 



 

 

53  

Although the computational cost value of the algorithms is close to each other, as 

presented in Table 16, the BAJS obtained computational cost relatively higher than the others 

for the NB classifier. For the KNN and RF classifiers, the BAJS obtained a better computational 

cost than the BCOA and the BDA. In general, all algorithms obtained a high computational cost 

for the RF classifier. 

Table 16 – Computational Cost (expressed in seconds) 

Classifier BAJS BCOA BCSA BDA BPSO No FS 

NB 14.9240 14.5810 13.0212 12.0944 12.1816 12.9275 

KNN 22.4620 23.4570 20.1423 23.6055 22.2376 12.6105 

RF 75.5678 76.6789 73.7893 76.9837 75.2323 34.7995 

Source: (THE AUTOR, 2021). 

Figure 13 – Selected features  

 
Source: (THE AUTOR, 2021). 

5. CONCLUSIONS AND FUTURE WORKS  

Azure Jay Search (AJS) is a new optimization metaheuristic that simulates the behavior of 

azure jays in the environment (specifically their complex communication system and food 

search). In principle, AJS was proposed to work with continuous optimization problems, in 

this paper we propose a Binary AJS (BAJS) for FS problems.  

The performance of the BAJS algorithm was compared, in terms of average training 

accuracy, standard deviation, computational cost and number of selected features, to other 
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optimization strategies, when submitted to a Fault Diagnosis dataset in the steel industry. 

Despite a relatively high computational cost when compared to other techniques and the fact 

that the dataset is complex, the proposed algorithm achieved relatively good average accuracy 

and feature subsets with a relatively low number of features.  

As future work, we intend to compare the performance of the proposed BAJS using 

other transfer functions from both the V-shaped and S-shaped families. 
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CONCLUSIONS 

The aim of this dissertation was to propose a new SI metaheuristic and evaluate its performance 

compared to other state-of-the-art metaheuristics, in terms of average accuracy, standard 

deviation, dimensionality reduction, computational cost and significance statistical, applied to 

the FS problem (in wrapper-based model) in a set of Fault Diagnosis data in the steel industry. 

To achieve this general objective, this dissertation was structured using the multipaper model.  

As these SI metaheuristics are initially proposed for solving continuous optimization 

problems, the first paper deals with exactly that kind of problem. One of the inspirations for the 

proposed metaheuristic (in addition to the behavior of a bird, almost globally threatened, found 

in southern Brazil and immediately adjacent areas), was the Crow Search Algorithm (CSA), 

proposed in 2016. The CSA is an easy-to-implement algorithm, it has a small number of 

parameters and presents, in general, a good performance in solving optimization problems. An 

important point to highlight is that the CSA algorithm faces problems when applied to 

multimodal functions. Thus, the objective of the first paper was to propose two versions of a 

novel flocking-based modified CSA called Azure Jay Search (AJS) and apply them, in 

comparison to other SI metaheuristics, to 10 fixed-dimension multimodal and public domain 

benchmark functions. The algorithms compared to AJS were also algorithms inspired by the 

behavior of birds in nature, such as the Particle Swarm Optimization (PSO), the Sooty Tern 

Optimization Algorithm (STOA), Seagull Optimization Algorithm (SOA) and CSA. The two 

versions of the AJS performed well in terms of average accuracy, and despite a relatively higher 

computational cost than the other techniques, the first version achieved better accuracy than the 
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CSA in 3 functions and statistically equivalent performance in 2 functions and the second 

version also obtained better accuracy than CSA in 3 functions, but statistically equivalent 

performance in 5 functions. Regarding the other techniques, the first version of AJS won (or 

achieved statistically equivalent performance) in 9 of the 10 functions and the second version 

in 10 of the 10 functions. 

To reach the general objective of this dissertation, the second paper uses as a 

binarization strategy a V-shaped family transfer function to propose a binary version of the AJS 

algorithm, called BAJS. This algorithm, in comparison to other binary SI metaheuristics, were 

applied to the Fault Diagnosis dataset in the Steel Industry in a wrapper-based model. BAJS 

performance is evaluated in terms of average training accuracy, standard deviation, 

computational cost, and number of features selected, and compared to other swarm intelligence 

metaheuristics, such as Binary Coyote Optimization Algorithm (BCOA), Binary Crow Search 

Algorithm (BCSA), Binary Dragonfly Algorithm (BDA), and Binary Particle Swarm 

Optimization (BPSO). Despite a relatively higher computational cost, the BAJS algorithm find 

good solutions in terms of average training accuracy and subsets with a relatively small number 

of features. For the Naive Bayes (NB) and Random Forest (RF) classifiers, the BAJS obtained, 

respectively, the best and the second-best average training accuracy (statistically equivalent to 

BPSO and BCOA). For the KNN classifier, the BAJS algorithm obtained the third-best 

accuracy and beat the BDA and No FS algorithms, and present accuracy statistically equivalent 

to BCSA. In addition, although BAJS selects relatively small subsets of features, it selected the 

second worst subset for the 3 classifiers, tying with the BCOA for the NB classifier, with the 

BDA for the KNN classifier and tied with the BPSO for the RF classifier. 
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